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ABSTRACT

The adjustment of parameters for expensive computer simulations is a challenging
and universal task in the scientific research pipeline. We refer to these problems
as Cost-Aware Simulation-Based Experimental Design (CAED). Traditional ap-
proaches include: a) brute force search, which is prohibitive for high-dimensional
parameter combinations; b) Bayesian optimization, which struggles to generalize
across setup variations and does not incorporate prior knowledge; c) case-by-case
experts designs, which is effective but difficult to scale. Recent work on language
models (LLMs) as scientific agents has shown an initial ability to combine pre-
trained domain knowledge with tool calling, enabling workflow automation. Nat-
urally, replacing the expert’s manual design with this automation seems to be a
scalable remedy to general CAED problems. As will be shown in our empirical
evaluations, LLMs lack cost awareness for parameter tuning tasks in scientific sim-
ulation, leading to poor and inefficient choices. Inference-time scaling approaches
enable better exploration, but the massive additional simulator queries they incur
add up to total cost and contradict the target of being efficient. To address this
challenge, we propose the Cost-Aware Simulation-Based Experimental Design
Agent (CAED-Agent), an agentic framework that combines inference-time scal-
ing with the cost-efficiency feedback from a lightweight surrogate model for solv-
ing CAED problems. Our experiments in three different simulation cases show
that CAED-Agent outperforms both Bayesian optimization and LLM baselines by
significant margins, achieving success rates comparable to inference-time scaling
with a ground truth simulator, while being far more cost-efficient.

1 INTRODUCTION

Simulation-based experimental design (Huan et al., 2024) involves tuning parameters for often ex-
pensive simulators to achieve a specific design goal. A particular challenge in simulation-based ex-
perimental design is to balance the outcome of interest (e.g., accuracy) versus the experimental costs:
time, computational power, and financial budgets, aka Cost-Aware Simulation-Based Experimental
Design (CAED). Consider the design task in computational fluid dynamics (Anderson et al., 1995),
where engineers need to juggle multiple design choices: low vs. high fidelity turbulence models,
dimensionality reduction levels, spatial/temporal resolutions, and truncation limits for numerical
solvers. Maximum-fidelity settings guarantee accuracy but can extend the runtime of simple simu-
lations from seconds to days, while overly coarse resolutions or model choices may fail to converge
or yield unphysical solutions. Striking the correct balance in physical simulators is crucial for ac-
complishing tasks within reasonable budgets.

Three common approaches address this challenge: 1) Brute force search, while comprehensive, be-
comes prohibitive as parameter combinations grow exponentially. 2) Bayesian optimization (Snoek
et al., 2012; Yao et al., 2024) and evolutionary algorithms (Perera et al., 2023) offer black-box alter-
natives to grid search, but struggle to generalize across problem variations (e.g., laminar to turbulent
flows, different geometry, or fluid to solid mechanics) and cannot leverage prior knowledge from
related domains (Char et al., 2019; Trabucco et al., 2022). 3) Expert-based design, while most ef-
fective for individual problems, is based heavily on human intervention and remains case-specific,
limiting scalability in related problems (Fromer and Coley, 2024; Bharti et al., 2024).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5
Efficiency

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Zero-Shot

0.0 0.5 1.0 1.5 2.0
Efficiency

Sequential

CAED-Agent w/ o4-mini
CAED-Agent w/ Qwen3-8B
CAED-Agent w/ Llama3.2-3B-Instruct
Direct Prompting w/ o4-mini
Direct Prompting w/ Qwen3-8B
Direct Prompting w/ Llama3.2-3B-Instruct
Bayesian Optimization
OPRO w/ o4-mini
OPRO w/ Qwen3-8B
OPRO w/ Llama3.2-3B-Instruct
Dummy Solution
Our Methods (CAED-Agent)

Figure 1: Performance averaged over simulators Heat 1D , Euler 1D and NS Transient 2D , in both
Single-Turn setting (left) and Multi-Turn setting (right). Efficiency (↑) is the mean normalized cost
of the successful simulations; Success Rate (↑) is the ratio of successful simulations. Compared to
baselines OPRO (Optimization by PROmpting (Yang et al., 2023)) and BO (Bayesian Optimization
with Gaussian Process (Nogueira, 2014)), our method achieves Pareto optima in all base models.

To address the scaling limitations of expert-based design, recent work explores large language mod-
els (LLMs) (OpenAI et al., 2024; Grattafiori et al., 2024; DeepSeek-AI et al., 2025) as tool-using
agents (Ren et al., 2025) to conduct simulation-based experimental designs across domains (Zhong
et al., 2024; Lv et al., 2025), potentially providing scalable expert-based intuitive design. These
methods often require inference-time scaling to produce solutions on par with non-LLM methods.
For example, BioDiscoveryAgent (Roohani et al., 2025) and LLAMBO (Liu et al., 2024) iteratively
call tools multiple times, adding feedback to prompts for subsequent refinement. However, in real-
world deployment, inference-time scaling’s computational cost becomes a critical limitation. Other
works use token regression to predict experimental metrics (Chen et al., 2022; Song et al., 2024;
Tang et al., 2025), such as cost awareness (Wu et al., 2024), for optimization. These works require
extensive retraining of the model and tokenizer for specific tools, and assumes cost is a fixed tool
property, which is invalid for physics-based simulations where cost depends heavily on parameter
choices and simulation scenario setup.

In light of the computational overhead of inference-time scaling and training, some works use
neural-network (NN) as surrogates for LLM directly calling the simulator (Lyu et al., 2024). How-
ever, neural surrogates are usually trained on a specific working condition and does not generalize
to alternative settings. Moreover, as surrogates are direct maps from parameters to physical fields
with no consideration of computation, they do not provide LLM agents with any insight on using the
simulator efficiently. Combined, when encountering out-of-distribution (OOD) scenarios beyond
the surrogate’s training range, agents must choose between inaccurate results predicted by the NN
or calling the costly simulator, harming either the performance or the cost.

We propose training lightweight neural networks that learn only the low-dimensional cost-efficiency
signal for cost-efficient inference-time scaling. The benifit is twofold: (1) data collection and model
training are made easier as the simulation cost depends only on a few key numerical parameters such
as spatial/temporal resolution and interpolation order; and (2) once the signal network is trained,
it provides lightweight feedback within LLM inference-time scaling pipelines, enabling effective
exploration scaling without expensive simulator evaluations. We call this methodology Cost-Aware
Simulation-Based Experimental Design Agent. Our contributions are as follows.

1. We introduce Cost-Aware Simulation-Based Experimental Design Agent, a novel method-
ology that integrates a lightweight neural network that learns only the cost-efficiency feed-
back with LLM inference scaling frameworks for cost-aware simulation-based experimen-
tal optimization. To our knowledge, we are the first to combine low-dimensional cost-
efficiency signal neural network with inference scaling for CAED.

2. We demonstrate in three physics simulator environments, each with varying environmental
setting and precision requirements, that CAED-Agent significantly outperforms both tradi-
tional Bayesian optimization and state-of-the-art LLM-based approaches.

3. We provide a comprehensive benchmark for the design of simulation experiments based on
cost-aware physics. Code for in-house simulator along with benchmark setups are open-
sourced at [redacted].
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2 RELATED WORK

Non-LLM Methods for Experimental Design and Benchmarks. Black-box optimization,
particularly Bayesian approaches, represents a well-established experimental design frame-
work (Smucker et al., 2018; Huan et al., 2024; Snoek et al., 2012; Knudsen et al., 2021; Pandita,
2019), motivated by the complex procedures underlying experiments or simulators. Recent works
explore state-of-the-art methods for experimental design and inverse problems, such as diffusion
models (Daras et al., 2024). Benchmarks like Design-Bench (Trabucco et al., 2022) and Inverse-
Bench (Zheng et al., 2025a) present 4-5 inverse design problems in scientific domains, respectively.
However, few benchmarks or methods explicitly consider evaluation cost as an optimization target,
making them unsuitable for our work. Consequently, we use in-house simulators for experiments.

LLM for Experimental Design. Recent work explores LLMs in agentic frameworks for scientific
experimental design, using inference scaling to sample experimental trajectories. Examples include
AI scientists autonomously designing experiments (Wang et al., 2023; Lu et al., 2024; Boiko et al.,
2023), automated hypothesis generation frameworks (Zheng et al., 2025b; Wang et al., 2024), and
LLM-driven laboratory automation (Bran et al., 2023; Jablonka et al., 2024). While demonstrating
the potential of LLMs as experimental designers, these serve as “evidence papers” showing feasibil-
ity rather than efficiency. Their pass@k metrics (k up to 256 or even 1024) are specially problematic
for expensive experiments. MLEBench (Chan et al., 2025) represents a notable exception by incor-
porating cost considerations (training time) for LLM on machine learning tasks, but does not capture
the nuance of scientific experiment design. In contrast, we specifically target CAED as our research
target, and contribute in-house simulator, evaluation, and benchmark setups.

Large Language Models as Optimizers. Recent studies leverage LLMs as black-box optimizers.
OPRO (Yang et al., 2023) uses iterative LLM prompting while LLM-assisted EA (Hao et al., 2024)
positions LLMs as evolutionary algorithm surrogatesboth requiring multiple evaluations per step.
Other approaches (Song et al., 2024; Chen et al., 2022; Liu et al., 2024; Tang et al., 2025) similarly
depend on extensive evaluations for inference or post-training data generation. Their fundamental
limitation is expensive trajectory generation requiring abundant simulator queries, computationally
infeasible for costly experiments. Our method combines inference scaling with lightweight signal
neural network for efficient cost-aware trajectory generation, avoiding expensive simulator queries.

3 METHODOLOGY

3.1 PROBLEM DEFINITION

Given design variable space X (e.g., spatial/temporal resolution, spatial interpolation methods), en-
vironmental parameter space Θ (e.g., initial or boundary conditions), and output observation space
Y , we define the forward simulation-based experimental process as F : X ×Θ→ Y:

y = F(x, θ), where x ∈ X , θ ∈ Θ (1)

With utility function Φ : Y × Θ → R (e.g. representing accuracy or physical validity of simulated
results) and cost function C : X × Y × Θ → R (e.g. wall time, complexity analysis, RAM
consumption), the CAED problem becomes:

x∗ = argmaxx∈X

(
Φ(y, θ), −C(x, y, θ)

)
(2)

In this work, we define computational cost as the number of floating point operations (consistent
with complexity analysis) and normalize cost relative to a brute-force reference (dummy) solution
zθ that satisfies accuracy requirements with optimal cost (within a coarse search granularity):

Ĉ(x, y, θ) =
C(x, y, θ)

C(zθ, θ)
. (3)

Following previous works (Snoek et al., 2012; Fromer and Coley, 2024), we combine the normalized
cost and utility objectives into a single reward metric for an experiment (x, y, θ):

R0(x, y, θ) =
Φ(y, θ)

Ĉ(x, y, θ)
(4)
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We consider two variants of the CAED problem: Single-Turn CAED, where the algorithm proposes
only one configuration, and Multi-Turn CAED, where the algorithm proposes a trajectory of config-
urations for iterative refinement (Huan et al., 2024; Bharti et al., 2024)):
Definition 3.1 (Single-Turn Cost-Aware Simulation-Based Experimental Design (CAED) ).

Q0 : x∗ = argmaxx∈XR0(x, y, θ), (5)

Definition 3.2 (Multi-Turn Cost-Aware Simulation-Based Experimental Design (CAED) ).

Qm : {x}∗ = argmax{x1,...,xn}∈X∗Rs({x1, . . . , xn}, {y1, . . . , yn}, θ), (6)

where X ∗ is a sequence consisting of an arbitrary number of elements from X . In this work, we
allow multi-turn solutions with any length. {y} = {y1, y2, ..., yn} are observations from sequence
{x} = {x1, x2, ..., xn}, and the modified multi-turn rewardRm is:

Rm({x1, . . . , xn}, {y1, . . . , yn}, θ) =
maxi Φ(yi, θ)∑

i Ĉ(xi, yi, θ)
, (7)

i.e., the ratio between maximum utility and total cost incurred by this sequence of proposals.

The two variants of the CAED problem, Q0 and Qm, are distinct and have different metrics with
different reference solution zθ. They evaluate different abilities of the solution: Q0 requires an in-
tuitive choice of simulation parameter, while Qm requires adaptation based on simulation feedback.
They are not to be recognized as the same task with a varying hyperparameter (number of turns).

3.2 COST-AWARE SIMULATION-BASED EXPERIMENTAL DESIGN AGENT

Overview. We adopt the inference-time scaling framework of Optimization by PROmpting
(OPRO) (Yang et al., 2023; Song et al., 2024; Chen et al., 2022), with the addition of a module
that efficiently provides utility Φ(x, y, θ) and cost Ĉ(x, y, θ) information without calling the ex-
pensive ground-truth simulations. Specifically, we train a neural-network surrogate to predict these
scalar signals from the design variables and environmental parameters. Because the scalar outputs
are strongly correlated with a few key design variables, signal model training converges with fewer
samples and smaller model size, compared with full-physics surrogates (Ghafariasl et al., 2024; Hou
and Evins, 2024); see C for details. The signal model then supplies feedback, the predicted utility
and cost, to the LLMs proposed parameter designs. These feedback signals, recorded as designvalue
pairs, are appended to the prompts history as in-context examples to aid the LLMs optimization
output. See Figure 2 for an illustration of CAED-Agents workflow.

Signal Neural Network. We train lightweight networks S : X×Θ→ DΦ×R to predict utility and
cost signals only, where DΦ is the short-hand for the range of utility function Φ. Our experiments
show that small fully connected neural networks can learn the function well for the experiments in
this paper, though we note that architecture and model size can be adapted according to the need of
specific solvers. See Appendix C for details on neural network implementation for this paper.

To provide rich, informative utility signals, as opposed to the binary boolean signals in prior works
(Smucker et al., 2018; Huan et al., 2024), we design a reward shaping function f that maps the
binary experiment outcome b(y) ∈ {0, 1} to a scalar soft success measure f(y) ∈ [0, 1] defined as
follows.
Definition 3.3 (Soft Utility Function). Following the notations in section 3.1, let Y be the exper-
iment’s observation space, Θ be the environmental variable space, and Φ be the original utility
function. Define the feasible set

Gθ := { y ∈ Y : Φ(y, θ) = 1 }. (8)

We call a mapping f : Y ×Θ→ [0, 1] a soft utility function if it satisfies:

(i) Feasibility calibration: ∀y ∈ Gθ : f(y) = 1, supy/∈Gθ
f(y) < 1.

(ii) Normalization: 0 ≤ f(y) ≤ 1, ∀y ∈ Y .

(iii) Monotone alignment: Φ(y1) ⪯ Φ(y2) =⇒ f(y1) ≤ f(y2).

4
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Figure 2: Overview of CAED-Agent. For a given simulation-based experimental design prob-
lem, CAED-Agent samples uniformly within design space to train a neural network surrogate for
feedback signals of utility and cost (right). In the Single-Turn CAED setting (left), the LLM agent
proposes an ensemble of candidate designs, calls the simulator to obtain feedback, and extend the
design-score pairs history for the next iteration of candidate ensemble generation. Finally the LLM
selects the best design at the last iteration based on surrogate signals. In the multi-turn CAED setting
(middle), the LLM sends the best design based on surrogate signal for actual evaluation at each deci-
sion step, receives actual evaluation feedback alongside surrogate signals, and output the trajectories
of designs sent for ground-truth evaluation as solution.

The signal neural network S learns the soft utility signal f(y) in the place of Φ(y). We provide the
following proposition that any soft utility function f guarantees an incremental performance over
binary utility functions when integrated into our framework, and a well-designed f will lead to more
significant improvements. Refer to Appendix D for our design of f and proofs of the proposition.

Definition 3.4 (Policies). Recall that R0(x, y, θ) and Rm({x1, . . . , xn}, {y1, . . . , yn}, θ) are re-
spectively single-turn and multi-turn reward defined in Eq.1). For a task instance θ , we define two
policies:

(i) Binary-utility policy πbin(xt | θ, ht−1): at step t, given history ht−1 =
{(xs, ys, b(ys, θ))}t−1

s=1, sample the next design xt; denote the induced distribution over
the final design by x ∼ πbin(· | θ).

(ii) Soft-utility policy πf (xt | θ, ht−1): replace b with any soft utility f from Definition 3.3,
i.e., the history stores (xs, ys, f(ys, θ)). Denote the resulting final-design distribution by
x ∼ πf (· | θ).

Proposition 3.5 (Soft utility dominates binary utility in expected reward). Fix a base model and
any soft utility f in Definition 3.3, the expected reward under the soft-utility policy is no worse than
under the binary-utility policy:

Eθ Ex∼π0
f (·|θ)

[
R0(x, θ)

]
≥ Eθ Ex∼π0

bin(·|θ)
[
R0(x, θ)

]
.
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Eθ E{x}∼πm
f (·|θ)[R

m({x}, θ)] ≥ Eθ E{x}∼πm
bin(·|θ)[R

m({x}, θ)] .

In summary, for a given simulation-based experimental design task, we train a lightweight network
S : X × Θ → DΦ × R to predict a certain design’s utility and cost; in cases where utility function
Φ is sparse and less informative, we substitute it with soft utility function f and learn soft utility
signals, i.e. we learn S : X × Θ → Dy × Ĉ, where Dy is the range of f . The trained network S
provides feedback for the following agent’s self-refinement.

Agentic Framework. The agent leverages Optimization by PROmpting (OPRO) as the base LLM
in-context optimization method, and use the signal network’s feedback as in-context examples. We
note that expanding to other inference-time scaling methods is straightforward and requires no
change or re-training of the signal neural network. Pseudocode for our agent implementation is
provided in Appendix B.

For Single-Turn CAED, the agent starts with 5 (a hyper-parameter to adjust based on inference bud-
get) uniformly-sampled tuples of (design variable, utility, efficiency) evaluated by surrogate neural
network. Then the agent iteratively proposes ensembles of candidate design choices, receives neural
network feedback for the entire ensemble, and append them to the example pool. The example pool
is managed as a priority queue with key (utility, efficiency) and presented to the model in ascending
order.The example pool only keeps top-10 samples (also a hyper-parameter) to concise the context.
The process is repeated for a fixed number of iterations, and the best design in the example pool is
chosen for the final design. The fixed number of iterations is another hyperparameter reflecting the
allowed LLM inference budget.

To solve Multi-Turn CAED, we warm-start with Single-Turn CAED solution for the first round of
ground truth simulator evaluation, and then append the results to the pool. This process is repeated
for each iteration to find the most promising proposals for simulator evaluation. In short, the Single-
Turn CAED works as an acquisition function for each of the multi-turn steps. The loop terminates
when either the LLM decides that a satisfactory solution is found or the computation cap is reached.

4 EXPERIMENTS

4.1 EXPERIMENTAL ENVIRONMENT

We demonstrate the ability of CAED-Agent on three physics simulators: (1) 1D heat conduction
equation with mixed boundary conditions, (2) 1D compressible inviscid flow with Euler equation,
and (3) 2D transient incompressible Navier–Stokes equation, referred to as Heat 1D , Euler 1D and
NS Transient 2D respectively, for brevity. Appendix A contains details on the design variable space
X , observation space Y , and parameter space Θ. We focus on spatial resolution tuning tasks, where
the tunable parameter governs the spatial resolution of the simulation, creating a trade-off between
simulation accuracy and computational cost. The tunable parameters in our experiments are:

1. The number of grid numbers (n_space) for Heat 1D and Euler 1D
2. The grid resolution along X-axis (resolution) for NS Transient 2D

We design three precision level goals δ for each task, reflecting moderate to stringent accuracy
requirements in real-world experiments. For each task and each precision level, we evaluate the
methods on around 25 settings varying in environmental parameters.

For each problem instance characterized by θ, we first obtain a (near-)optimal design zθ via brute-
force search that guarantees successful convergence, e.g. through iteratively doubling the parameter
until successful, serving as a reference point for both accuracy and cost. This is solely for the
evaluation of our method and not necessary in practice. We then define the success of the simulation
through the following utility function:

Φ(F(x, θ), θ) = 1{ ||F(x, θ)−F(zθ, θ)||2 ≤ δ } , (9)

Where 1 is the indicator function, || · ||2 is the root mean square error across dimensions of the
observation space, and δ is a tolerance parameter reflecting various precision needs in real-world
applications. The success rate is defined as the ratio of successful simulations where Φ(F(x, θ)) = 1.
The cost C is defined as previously introduced in our problem formulation.

6
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4.2 BASELINES AND SETTING

We compare our results against the following baselines. Bayesian Optimization (BO): We use a
classic implementation (Nogueira, 2014) with Gaussian Process (GP) (Rasmussen, 2004) and Upper
Confidence Bound (UCB) (Berk et al., 2020). We used consistent training samples for the signal
neural network CAED-Agent and for the GP regressor to achieve a fair comparison. Direct query
to LLM medels (Direct Query) and the original Optimization by Prompting (OPRO) (Yang et al.,
2023) are LLM-based approaches. For all LLM-based methods (including our CAED-Agent), we
design a shared set of prompts explaining the Physics scenario, optimization target and simulator
calling APIs; refer to E for examples. Notably, OPRO requires repeated evaluations of the ground-
truth simulator; therefore, we restrict its use to the Multi-Turn setting.

For the implementation of CAED-Agent, we trained a lightweight neural network for each task
(Heat 1D , Euler 1D , and NS Transient 2D ) separately, each with approximately 10k parameters
and trained on about 4k sampled points per problem. The networks outputs are the RMSE to the
reference solution and the cost. At inference time, we map the predicted RMSE to a utility signal
using the soft utility functions described in Definition 3.3; we also compare using the binary utility
Φ in ablation studies. See Appendix C for details.

4.3 METRICS

For ease of future reference, we denote the optimization targets in 5 and 6 as respectively R0 and
Rm, referring to them as Single-Turn or Multi-Turn Reward Functions. We also report success rates
P 0 and Pm to help us better understand the qualities of proposed solutions.

R0 =
Φ(F(x, θ), θ)

Ĉ(x, θ)
, Rm =

maxi Φ(F(xi, θ), θ)∑
i Ĉ(xi, θ)

4.4 ANALYSIS

We refer readers to Table 2 of F for complete results in three scenarios; here we report the following
findings that help understand and verify the efficacy of our method.
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Figure 3: Comparison of Single-Turn and Multi-Turn re-
wards for all methods. Each bar shows the mean reward,
averaged over all precision levels of a task, for methods on
a given base model. As discussed in definition 4.2, OPRO is
only considered in the Multi-Turn scenarios. BO is plotted
alongside LLM methods for clarity of comparison.

Our method outperforms most
baselines in terms of R0 and Rm.
As shown in Figure 3 and Figure 1,
our method outperforms all compar-
isons in the Single-Turn setting and
all but a few exceptions in the Multi-
Turn setting. We argue that these sub-
optimal cases are due to the inferior
reasoning ability of open-source mod-
els, causing them to occasionally fail
to refine their solutions based on feed-
back. Note that in many cases, es-
pecially in the easier scenarios Heat
1D and Euler 1D , OPRO and BO are
significantly worse than Direct Query,
whereas our method is significantly
better. This is because convergence
is relatively easy in such scenarios, so
the additional ground-truth simulator
calls used by OPRO and BO incur ex-
tra cost without meaningfully improv-
ing the solution. Our method does not
require additional ground-truth simu-
lator queries.

Our method delivers substantial reward gains over Direct Query, especially on medium- and
easy-difficulty tasks; on harder tasks, it consistently improves success rate. As shown in Fig-
ure 4, reward improvements are most pronounced in easier scenarios (Heat 1D ; low-precision Euler
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Figure 4: Reward (R0, Rm) and success rate (P 0, Pm) across all difficulty levels in the Single-
Turn setting (left) and the Multi-Turn setting (right). Tasks are ordered by increasing difficulty:
Heat 1D , Euler 1D , NS Transient 2D . Our methods improvements in reward are largest on easy-to-
medium tasks and remain present on hard tasks.

1D ). In harder scenarios (medium- to high-precision Euler 1D ; NS Transient 2D ), reward gains are
smaller, but success rate improves steadily. This pattern suggests an intrinsic optimization behavior:
for unfamiliar questions, CAED-Agent first optimizes correctness, and then optimizes efficiency.

4.5 ABLATIONS

We present ablation studies for the two main components of CAED-Agent: the surrogate neural
network and the LLM agent. All ablation studies are preformed on the same set of problems, Euler
1D with medium precision level, with base model OpenAI o4-mini (OpenAI et al., 2024).
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Figure 5: Mean Reward over optimization Steps
for CAED-Agent, with or without scenario set-
ting description in prompt.
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Figure 6: Mean Reward over optimization Steps
for CAED-Agent, either with surrogate signal,
noisy signal or fixed illustrations.

Physics prior knowledge is necessary to achieve in-context optimization in our tasks. Figure
5 presents an ablation study on whether the scenario setting is included in the LLM’s prompt. We
argue that the merits of utilizing LLM in our framework lie in both their in-context optimization
abilities and their prior domain knowledge. For the alternative setting (orange lines in 5), we only
prompt the model to solve the problem as a numerical optimization problem; see the prompts in
E. Figure 5 shows that CAED-Agent (blue lines), with physics prior knowledge, can consistently
improve reward to surpass baselines, whereas the trajectory without scenario description fails to
achieve improvements and converges to a low-reward local optimum. This behavior is also visible
in a case study illustrated in 11a.

Feedback signals are important for agent optimization in our tasks. We study the effects of
our surrogate signal network and present the results in figure 6. We compare CAED-Agentwith (1)
in-context optimization with a fixed set of ground-truth examples for all problems, and (2) our agent
equipped with noisy signal from a poorly fitted surrogate model. We experiment on both Single-
Turn and Multi-Turn settings in Euler 1D ’s medium precision level with base model GPT-4o-mini.
As shown in Figure 6 and 11b, in both the dataset-level pattern and the case study, our method
starts from a worse point than that of fixed illustrations’, but surpasses it in later optimization steps;
the noisy signal fails to guide the model’s optimization after the first few steps, highlighting the
importance of an effective signal model.
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Soft surrogate signals significantly improve optimization performance compared to binary sur-
rogate signals. We verify the effectiveness of the soft utility (Definition 3.3). Specifically, we com-
pare Single-Turn results of our framework under two variants: (a) integrating surrogates with the
original binary utility function, and (b) our approach that uses a soft utility function in the surrogate
signals. As shown in Figure 7, the soft-utility variant achieves significantly better performance at
the dataset level and exhibits a steadier upward trend in the case study.

We also present a case study in 7b, which plots the predicted reward (dashed lines) of the step-wise
optimal design for both methods besides the real reward in solid lines. As shown by the orange
dashed line in 7b, once the model receives a zero-utility signal from the surrogate at step 3, it stops
refining and remains at a local optimum. By contrast, the blue line shows that although the model
proposes the same point at step 3, the non-zero soft-utility signal it receives enables it to continue
refining the solution.
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(a) Mean Reward over Optimization Steps for CAED-
Agent, using different functions for surrogate signal.
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(b) Case study. An exemplar optimization trajectory in
Single-Turn setting. Notations explained in 4.5.

Figure 7: Study on soft utility functions vs. binary signals for surrogate signal for o4-mini.

Complete ablation study results are presented in Table 3 of Appendix F. We show that each compo-
nent of CAED-Agent, including the physics prior, the signal NN, and the prompt design all contribute
to the final performance. CAED-Agent achieves the Pareto optima of success rate and efficiency for
all settings, as shown in Figure 1.

5 CONCLUSION

We presented the Cost-Aware Simulation-Based Experimental Design Agent, a LLM Agent frame-
work for experimental design that focuses on cost-efficiency. Through experiments on three physics
simulator environments, each with varying environmental setting and precision requirements, we
demonstrated that CAED-Agent consistently outperforms both classical Bayesian optimization base-
lines and state-of-the-art LLM-based optimizers. Our results highlight its ability to achieve high suc-
cess rates and favorable cost-efficiency trade-offs, even when direct evaluations are prohibitively ex-
pensive. Our method introduces the novel contribution of utilizing a low-dimensional cost-efficiency
signal neural network, which through our ablation studies we show significantly improves utility of
both single-turn and multi-turn experiment design. These findings suggest that CAED-Agent pro-
vides a practical and scalable path toward deploying agentic frameworks in experiment design in
scientific discovery pipelines.

Our approach has the following limitations for exploration in future work. The accuracy of CAED-
Agent depends on the fidelity of the surrogate, which may under-fit in highly complex or noisy exper-
imental landscapes, and requires some degree of human tuning. Moreover, our data sampling strat-
egy does not guarantee the minimization of sampling size while the model converges. Future work
can aim to address these limitations by exploring richer surrogate models, adaptive sampling strate-
gies, and tighter coupling between surrogate predictions and target function evaluation to improve
the quality of feedback to LLM. Extending CAED-Agent to multi-objective, higher-dimensional, or
real-world experimental systems will further test its scalability and practical utility, paving the way
toward more autonomous and cost-efficient experimental design agents.
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REPRODUCIBILITY

We evaluate this work on three physics-solver environments that we implemented: Heat 1D , Euler
1D , and NS Transient 2D which include solvers, reference solutions, problem sets, and evaluation
pipelines. We plan to extend and organize these into a benchmark to aid the open-source community
in solving Cost-Aware Simulation-Based Experimental Design (CAED) better. As the benchmark
is still in progress, our solvers, evaluation pipeline, etc. may not yet be robust enough for convenient
reproduction. Therefore, we consider it appropriate to open-source the code for this work after
acceptance, including not only a (subset) of the aforementioned benchmark but also the neural-
network training, the main framework, and the plotting components.

ETHICS STATEMENT

This work studies cost-aware experimental design agents for physics simulations (e.g., 1D Heat
Conduction and Euler equations) and does not involve human subjects, personal data, or sensitive
attributes. All data are synthetic or standard simulation benchmarks; no personally identifiable
information is used or created. We comply with licenses and usage terms for third-party software
and models; any proprietary APIs were accessed under their respective terms.

Potential risks are limited. As our method can improve search efficiency, there is a generic risk
of misuse to optimize unsafe physical systems. To mitigate this, we focus on pedagogical and
widely used benchmark scenarios with explicit constraints and provide documentation intended for
scientific replication rather than domain-specific exploitation.

Fairness and demographic bias considerations are not applicable to our setting. The environmental
impact is modest: we train lightweight surrogates on small datasets and use limited inference bud-
gets; we report hardware and runtime details to enable carbon accounting. For reproducibility, we
will release code, configurations, and seeds, and follow standard reporting checklists. We declare no
conflicts of interest and no concurrent submissions related to this work.

THE USE OF LARGE LANGUAGE MODELS

In this work, Large Language Models are primarily used for assisting in polishing the mathematical
formulation in 3.3, explaining the results in 4.5 and generating the plotting code for Figure 1, 3, 4,
5, 6 and 7.

They are also used for polishing text in some sections. They were NOT used in research ideation
and/or writing.
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A EXPERIMENTAL ENVIRONMENT

Heat Transfer 1D. (Heat 1D ) This solver addresses the 1D heat conduction equation:

∂T

∂t
= α

∂2T

∂x2

using explicit finite difference methods with natural convection boundary conditions at x = 0 and
adiabatic conditions at x = L. The tunable parameters include the spatial resolution (n_space)
and the CFL number (cfl) that determines the simulation time step by:

∆t = cfl× (∆x)2

2α
,

where α is the thermal diffusivity. The computational cost follows the relationshipC = n_space×
n_t, where n_t is the number of time steps accumulated in the solver. The metric for convergence
is the RMSE of the heat flux at the convection boundary at the final time step. This simulation has
25 different profiles with varying initial uniform temperatures and physical properties, generating
148 tasks in total, counting both Single-Turn and Multi-Turn settings.

Euler 1D. (Euler 1D ) This solver implements the 1D Euler equations for compressible flow:

∂U

∂t
+
∂F(U)

∂x
= 0

using the MUSCL-Roe method with superbee limiter for high-resolution shock capturing. The tun-
able parameters include the CFL number (cfl) that determines the simulation time step by:

∆t = cfl× ∆x

|λ|max
,

where |λ|max is the maximum eigenvalue of the flux Jacobian, the spatial resolution (n_space), the
limiter parameter beta for generalized minmod flux limiter, and the blending parameter k between
0-th and 1-st order interpolation scheme. The computational cost follows the relationship C =
n_space × n_t, where n_t is the number of time steps accumulated in the solver. Convergence
is evaluated through multiple criteria: RMSE of the solution fields, positivity preservation of density
and pressure, and shock consistency validation. The dataset encompasses 3 classical benchmark
profiles (Sod shock tube, Lax problem, and Mach 3), generating a total of 134 tasks, counting both
Single-Turn and Multi-Turn settings.

Transient Navier-Stokes 2D. (NS Transient 2D ) This solver implements the 2D transient incom-
pressible Navier-Stokes equations:

∂u

∂x
+
∂v

∂y
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
where u, v are velocity components, p is pressure, and Re is the Reynolds number. The tunable
parameters include the spatial resolution (resolution) that determines the computational grid
size, the CFL number (cfl) controlling time step stability through ∆t = cfl×∆x, the relaxation
factor (relaxation_factor) for pressure correction convergence, and the residual threshold
(residual_threshold) for pressure solver convergence. The computational cost follows the
relationship C = 2 × resolution2 × (num_steps + total_pressure_iterations),
where the factor of 2 accounts for the fixed aspect ratio domain configuration with x_resolution =
2 × resolution. Convergence is evaluated through normalized velocity RMSE criteria, with
temporal evolution tracked throughout the simulation. The dataset encompasses 18 benchmark pro-
files across 6 different boundary conditions (simple circular obstacles, complex geometries, random
obstacle fields, dual inlet/outlet configurations, dense obstacle arrays, and dragon-shaped obstacles)
tested at three Reynolds numbers (Re=1000, 3000, 6000), generating a total of 44 tasks across dif-
ferent precision levels and geometric complexities.
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Dummy Solution Search. For each task, we find optimal solutions that meet both accuracy re-
quirements and have the lowest cost using brute-force search. Given our parameters have a mono-
tonic relationship between cost and accuracy (i.e., they are spatial resolution), we start with a coarse
value and Multi-Turnly refine it with fixed ratios (e.g., halve the time step size, double the spatial
resolution) until the distance between adjacent runs is within the accuracy threshold. For single-turn
tasks, we set the reference cost to the optimal cost found by brute-force search. For multi-turn tasks,
we set the reference cost to the accumulated cost incurred during the brute-force search.

B ALGORITHMIC DIAGRAM

Algorithm 1 Solve, Single-Turn CAED-Agent Framework

1: Input: Forward experimental process F , design space X , environment parameters θ, neural
surrogate S , number of iteration N , history context length K, initial sample size m.

2: Initialize LLM design-value history as a priority queueM
3: Push toM uniformly sampled initial design-value pairs {(xj ,Φpred

j , Ĉpred
j )}mj=1, evaluated by

S
4: repeat
5: LLM proposes candidate designs {xi}ki=1

6: Evaluate candidates with neural surrogate: (Φpred
i , Ĉpred

i )← S(xi, θ) for i = 1, . . . , k

7: Push {(xi,Φpred
i , Ĉpred

i )} toM, keeping only top-K samples.
8: until Number of iterations N reached
9: Output: x∗ = argmaxxi

Φ(S(xi,θ),θ)
C′(xi,θ)

from design-value history.

Algorithm 2 Multi-Turn CAED-Agent Framework

1: Input: Forward experimental process F , design space X , environment parameters θ, neural
surrogate S , number of iteration for Single-Turn solution N , history context length K, initial
sample size m, maximum allowed number of ground-truth evaluation T .

2: Obtain Single-Turn solution x = Solve(F ,X , θ,S,N ,K,m)
3: Initialize solution sequence as a queue A = {x0}
4: Initialize LLM ground-truth design-value history as a priority queueM
5: Evaluate with ground-truth simulator (Φgt

0 , Ĉ
gt
0 )← F(§′, θ)

6: Push (x0,Φ
gt
0 , Ĉ

gt
0 ) toM

7: repeat
8: LLM agent proposes candidate designs {xi}ki=1

9: Evaluate candidates with neural surrogate: (Φpred
i , Ĉpred

i )← S(xi, θ) for i = 1, . . . , k

10: Add top surrogate-evaluated pair (xi,Φ
pred
i , Ĉpred

i ) to solution sequence A
11: Evaluate with ground-truth simulator (Φgt

i , Ĉ
gt
i )← F(xi, θ)

12: Push {(xi,Φgt
i , Ĉ

gt
i ) toM, keeping only top-K samples

13: until LLM outputs should_stop = True or number of iterations reaches T
14: Outputs A

C NEURAL NETWORK TRAINING

We train one neural-network for each problem (Heat 1D , Euler 1D , NS Transient 2D )’s all precision
levels; each network’s input and output dimension are as described in 3.2.

We uniformly sample design and environmental parameters on coarse grids. We specifically in-
clude environmental parameters to enable interpolation across conditions while avoiding training
and tracking multiple network instances for different environment combinations. We provide the
range of inputs (environmental parameters and tunable parameters) as follows, from which we per-
formed uniform sampling, and statistics of sampled targets in Table 1. We stress that while our
target dimensions have drastically different ranges and high variance, we perform in-dimension nor-
malization as shown in Figure 9, therefore achieving satisfactory training results shown in Figure
8.
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Heat 1D:
Environmental Parameters:
L: [0.1, 0.3] # Wall thickness [m] - uniform random in range
k: [0.5, 1.0] # Thermal conductivity [W/m-K] - uniform random in

range↪→
h: [0.1, 10000] # Convection coefficient [W/mš-K] - log-uniform

random in range↪→
rho: [1000, 2000] # Density [kg/mş] - uniform random in range
cp: [800, 1000] # Specific heat [J/kg-K] - uniform random in range
T_inf: [-40, 40] # Ambient temperature [řC] - uniform random in

range↪→
T_init: [0, 30] # Initial temperature [řC] - uniform random in

range↪→
record_dt: 10.0 # Time interval between recordings [s] - fixed
end_frame: 24 # Simulation end frames - fixed

Tunable Parameters:
n_space: [64, 2048] # Number of spatial points (iterative search:

initial=64, factor=2, max_iter=6)↪→

Euler 1D:
Environmental Parameters:
L: 1.0 # Domain length - fixed
gamma: 1.4 # Ratio of specific heats - fixed
case: {"sod", "lax", "mach_3"} # Initial condition name - 3

discrete values across profiles↪→
record_dt: {0.02, 0.012, 0.009} # Time interval between recordings

- specific values per case↪→
end_frame: 10 # Simulation end frames - fixed

Tunable Parameters:
n_space: [256, 4096] # Number of grid cells (iterative search:

initial=256, factor=2, max_iter=7)↪→

NS Transient 2D:
Environmental Parameters:
boundary_condition: {1, 2, 3, 4, 5, 6} # 6 boundary condition types

across 18 profiles↪→
reynolds_num: {1000, 3000, 6000} # Reynolds number - 3 discrete

values↪→
vorticity_confinement: 0.0 # Fixed across profiles
total_runtime: 1.0 # Fixed across profiles - fixed
no_dye: False # Fixed across profiles
cpu: False # Fixed across profiles
visualization: 0 # Fixed across profiles
advection_scheme: "cip" # Fixed across profiles

Tunable Parameters:
resolution: [50, 400] # Grid resolution (iterative search:

initial=50, factor=2, max_iter=4)↪→

Table 1: Dataset Statistics.

RMSE Loss Cost N. samples

Heat 1D 4.47e−4 ± 9.50e−4 8.33e7 ± 1.27e8 4440
Euler 1D 3.48e−2± 3.60e−2 2.76e6 ± 2.42e6 4020
NS Transient 2D 2.55e−1 ± 1.90e−1 2.11e8 ± 1.94e8 1320

For all problems, we train neural-network with the same structure as shown in 9; to achieve optimal
results for individual problems, we compare the training results with three sets of structures for
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each problem and choose the one with the best test loss. Specifically, we experiment with the
combinations of :

h: {2, 3, 4, 6}
d: {64, 128, 256}

Where h, d follow the notation in 9, and the hyper-parameters we used are shown as follows:

activation_mod: ReLU
layer_norm: False
res_connection: False

batch: 16
epochs: 40
steps_per_epoch: 200

peak_lr: 1e-3
weight_decay: 1e-4
warmup_steps: 100
decay_steps: 1000
gnorm_clip: 1.0
accumulation_steps: 100

We show the results of our best checkpoints for the three problems in 8.

D SOFT UTILITY FUNCTION

Proof of Proposition 3.5. Let b(y, θ) := 1{Φ(y, θ) = 1} be the binary utility and let sf (y, θ) :=
f(y, θ) be any soft utility satisfying Definition 3.3. By normalization (Def. 3.3(ii)), f(y, θ) ∈ [0, 1],
and by feasibility calibration (Def. 3.3(i)), f(y, θ) = 1 iff y ∈ Gθ = {y : Φ(y, θ) = 1} and
supy/∈Gθ

f(y, θ) < 1. Hence the postprocessing map

τ : [0, 1]→ {0, 1}, τ(u) := 1{u = 1}
is well-defined (by normalization) and satisfies b(y, θ) = τ(f(y, θ)) for all (y, θ) (by feasibility
calibration). Thus the binary signal is a deterministic garbling of the soft signal.

Fix a base model and budget T ≥ 1, and write the histories hbint−1 = {(xs, ys, b(ys, θ))}t−1
s=1 and

hft−1 = {(xs, ys, f(ys, θ))}t−1
s=1; then hbint−1 = τ(hft−1) coordinate-wise. Given any binary-utility

policy πbin, define a soft-signal policy π̃f that simulates it via

π̃f ( · | θ, hft−1) := πbin( · | θ, τ(hft−1)).

Under identical environment randomness, π̃f induces the same trajectory distribution as πbin, hence

ExT∼π̃f (·|θ)
[
R0(xT , θ)

]
= ExT∼πbin(·|θ)

[
R0(xT , θ)

]
for all θ.

Taking expectation over the task distribution yields equality in expectation.

By monotone alignment (Def. 3.3(iii)), if Φ(y1, θ) ⪯ Φ(y2, θ) then f(y1, θ) ≤ f(y2, θ); hence
ranking by f is orderpreserving with respect to Φ. Since R0(x, θ) (Eq. (4)) is nondecreasing in Φ
(its numerator) and f = 1 iff Φ = 1 (by feasibility calibration), using f to refine decisions cannot
decrease the expected reward relative to π̃f , and is strictly better whenever such refinements occur
with positive probability.

Now let πf denote any soft-signal policy produced by our framework. Since πf can always ignore
the extra information and implement π̃f , we have

Eθ ExT∼πf (·|θ)
[
R0(xT , θ)

]
≥ Eθ ExT∼π̃f (·|θ)

[
R0(xT , θ)

]
. (∗)

The case T = 1 (zero-shot) follows verbatim by replacing xT with the single-step x.
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(a) Heat 1D

(b) Euler 1D

(c) NS Transient 2D

Figure 8: Test results of our best neural network for each task. The plots from left to right respec-
tively mean: (left) soft utility signal of true RMSE loss vs. soft utility signal of predicted RMSE
loss, (middle) true cost vs. predicted cost, (right) distribution in the cost-utility space of predicted
vs. true points.
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Figure 9: Neural-Network Structure
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In this work, we define the soft utility function f(r) as follows:

f(r) =

{
1.0 if d ≤ ϵ
αe−β(r−1)γ + (1− α)

(
1

1+ω(r−1)δ

)
if d > ϵ,

(10)

where r = d
ϵ . The parameters are set to α = 0.6, β = 0.43, γ = 1.5, ω = 0.3, and δ = 2.2.

This function is designed so that the utility value drops to approximately 0.5 when the distance d
is double the tolerance ϵ (i.e., r = 2), and it decays rapidly towards zero as the distance increases
further, becoming negligible for distances approaching 10ϵ (i.e., r = 10). A plot of f(r) is shown
in Figure 10.

Figure 10: Plot of the soft utility function f(r). The function maintains a maximum utility of 1.0
for normalized distances r ≤ 1, drops to approximately 0.5 at r = 2, and rapidly decays towards
zero for larger values of r.

E PROMPTS USED IN AGENT FRAMEWORK

Prompt Example for Euler 1D Single-Turn w/. Scenario Setting
Instruction

Your task is to find the optimal parameter, solving the 1D Euler equations for compressible
inviscid flow, using a 2nd order MUSCL scheme with Roe flux and generalized superbee limiter.
This serves as a simplified model for compressible fluid dynamics. You should try to minimize
the total cost incurred by function calls, but your primary goal is to successfully meet the
convergence criteria. You should always use the tool call function to finish the problem.

Workflow: n_space (Number of grid cells) determines the spatial discretization resolution:
∆x = L/n_space where L is the domain length. You may **only** change ‘n_space‘. The
value of k is **-1.0**, beta is **1.0**, cfl is **0.25**. **You must not change them!** You
have only one opportunity to choose an optimal value for n_space. No trial-and-error or iter-
ative optimization is permitted. Your goal is to select a value that provides adequate spatial
resolution while keeping computational cost reasonable.

Step 1: Make your best **one-shot** guess for n_space.
Step 2: Call the Convergence Test Function and check if converged.
Step 3: Output final answer with no further tool calls.

Input

QID: 1
Problem: Euler 1D Equations with 2nd Order MUSCL-Roe Method
This simulation solves the 1D Euler equations for compressible inviscid flow, using a 2nd order
MUSCL scheme with Roe flux and generalized superbee limiter:
Conservative form:

∂U

∂t
+
∂F(U)

∂x
= 0
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Where the conservative variables and flux are:

U =

(
ρ
ρu
ρE

)
, F =

 ρu
ρu2 + p
u(ρE + p)


Primitive variables:

• ρ = density
• u = velocity
• p = pressure
• E = specific total energy

Equation of state:

p = (γ − 1)ρ

(
E − u2

2

)
where γ is the ratio of specific heats.
Spatial Discretization: The spatial discretization uses MUSCL reconstruction with blending
parameter k:

UL
j+ 1

2
= Uj +

1 + k

4
ψ(rj)(Uj+1 −Uj)

UR
j+ 1

2
= Uj+1 −

1 + k

4
ψ(rj+1)(Uj+2 −Uj+1)

where k is a blending coefficient between central (k = 1) and upwind (k = −1) scheme, and
ψ(r) is the slope limiter function.
Slope Limiting: The slope limiter uses a generalized superbee limiter:

ψ(r) = max [0,max [min(βr, 1),min(r, β)]]

where β is the limiter parameter controlling dissipation.
The slope ratio r at interface j is defined as:

rj =
Uj+1 −Uj

Uj+2 −Uj+1

This ratio indicates the local non-smoothness, which will be the input into the slope limiter to
achieve the TVD condition.
Flux Computation: The interface flux is computed using the Roe approximate Riemann solver:

Fj+ 1
2
=

1

2

[
F(UL) + F(UR)

]
− 1

2
|A|(UR −UL)

where |A| is the Roe matrix with Roe-averaged quantities.
Initial condition cases:

• sod: Left: ρ = 1.0, u = 0.0, p = 1.0; Right: ρ = 0.125, u = 0.0, p = 0.1

• lax: Left: ρ = 0.445, u = 0.6977, p = 3.528; Right: ρ = 0.5, u = 0.0, p = 0.571

• mach_3: Left: ρ = 3.857, u = 0.92, p = 10.333; Right: ρ = 1.0, u = 3.55, p = 1.0

Parameter Information:
• cfl: Courant-Friedrichs-Lewy number, CFL = (|u|+c)∆t

∆x where c =
√
γp/ρ is the

speed of sound
• beta: Limiter parameter for generalized superbee
• k: Blending parameter between central and upwind fluxes
• n_space: Number of grid cells for spatial discretization, determines spatial resolution:
∆x = L/n_space

Physical Parameters:
• Domain length: 1.0
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• Gamma (ratio of specific heats): 1.4
• Case: sod

Convergence Check:
• Errors between the simulation based on your solution and the simulation based on the

self-refined solution are computed to assess convergence.
• Convergence is confirmed if the following validation criteria are satisfied.

Validation Criteria:
• Current Problem Precision Level: HIGH
• Required RMSE Tolerance: ≤ 0.01

• Relative RMSE must meet this tolerance compared to self-refined solution
• Positivity preservation: pressure and density must remain positive at all times
• Shock speed consistency: pressure gradients should not exceed physical bounds

Available functions:

Function Name: euler_1d_check_converge_n_space
Description: Conduct a 1D Euler PDE simulation and evaluate its spatial convergence by dou-
bling n_space. It returns the following results:

• RMSE: float
• is_converged: boolean
• accumulated_cost: integer
• The cost of the solver simulating the environment: integer
• The cost of the solver verifying convergence (This will
not be included in your accumulated_cost): integer

• metrics1: object
• metrics2: object

Parameters:
• cfl (float): CFL number
• beta (float): Limiter parameter for generalized superbee
• k (float): Blending parameter for MUSCL reconstruction
• n_space (integer): Current number of grid cells for spatial discretization

Required parameters: cfl, beta, k, n_space Design-Value History

Below are some previous n_space values and their simulation accuracy
and efficiency indicators. The values are arranged in ascending
order based on accuracy, where higher values indicate a closer
simulation result to ground truth. The efficiency indicator is
also important, where higher values mean a more cost-efficient
n_space choice.

↪→
↪→
↪→
↪→
↪→

<n_space> 240 </n_space>
Accuracy Indicator:

0.9834
Efficiency Indicator:

1.1479

<n_space> 512 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.2717

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

<n_space> 400 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.4255

<n_space> 300 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.7290

<n_space> 288 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.7897

<n_space> 260 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.9707

<n_space> 258 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.9865

<n_space> 257 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.9946

<n_space> 256 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

1.0027

<n_space> 252 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

1.0364

Output final answer in the requested format with a new n_space value
that is different from all values above. You should first ensure
an accurate simulation by achieving 1.0 in accuracy indicator,
then gradually increase efficiency by choosing a coarser n_space
value.

↪→
↪→
↪→
↪→

Prompt Example for Euler 1D Single-Turn w/. Scenario Setting
Instruction

Your task is to optimize a one-dimensional black-box function with a given parameter. You will
be prompted with a list of history of parameter and values, where values include an accuracy
indicator and success indicator. You are required to first optimize accuracy until it reaches
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1.0, then optimize efficiency for as high as possible. The parameter in history will start with
<n_space>and end with </n_space>. Please return a parameter value different from all values
given in the history that you think will optimize the function value as requested. Please return
your answer by starting with <n_space>and ending with </task>as well. You may NOT use
any form of prior knowledge, and treat all parameter names, function names, etc. as
purely arbitrary.

Input

Design-Value History

Below are some previous n_space values and their simulation accuracy
and efficiency indicators. The values are arranged in ascending
order based on accuracy, where higher values indicate a closer
simulation result to ground truth. The efficiency indicator is
also important, where higher values mean a more cost-efficient
n_space choice.

↪→
↪→
↪→
↪→
↪→

<n_space> 240 </n_space>
Accuracy Indicator:

0.9834
Efficiency Indicator:

1.1479

<n_space> 512 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.2717

<n_space> 400 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.4255

<n_space> 300 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.7290

<n_space> 288 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.7897

<n_space> 260 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.9707

<n_space> 258 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

0.9865

<n_space> 257 </n_space>
Accuracy Indicator:
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1.0000
Efficiency Indicator:

0.9946

<n_space> 256 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

1.0027

<n_space> 252 </n_space>
Accuracy Indicator:

1.0000
Efficiency Indicator:

1.0364

Output final answer in the requested format with a new n_space value
that is different from all values above. You should first ensure
an accurate simulation by achieving 1.0 in accuracy indicator,
then gradually increase efficiency by choosing a coarser n_space
value.

↪→
↪→
↪→
↪→

F DETAILED RESULTS
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Figure 11: Case studies for ablations, with base model OpenAI o4-mini.
Full results of the comprehensive benchmark are presented in table 2. The case studies as introduced
in 4.5 are shown in Figure 11.

The full ablation results are presented in table 3. Our ablations on surrogate neural network and prior
knowledge are conducted on Euler 1D ’s medium precision level tasks; we report reward R0, Rm

and success rates P 0, Pm for both Single-Turn and Multi-Turn settings. Our base model is fixed as
o4-mini. Note that although CAED-Agent without Physics prior is achieving a higher mean reward
in Single-Turn setting, its success rate is much lower than our method, indicating its frequent choice
of coarse designs that leads to high reward in only a few tasks. We argue that this is a form of reward
hacking as it contradicts with our expectation to carry out experiments correctly and efficiently.
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Table 2: Main evaluation results in both Single-Turn and Multi-Turn settings. Values in each box
is the mean of tasks evaluated in three precision levels. Note that we report both reward R0, Rm

and for-reference quantities P 0 and Pm. Values in bold font are the best-achieving ones, and values
with ↑ indicate a significant rise compared to direct prompting.

(a) Single-Turn CAED-Agent

Heat 1D Euler 1D NS Transient 2D

Method Base Model R0 P 0 R0 P 0 R0 P 0

BO (Nogueira, 2014) – 0.253 1.000 0.464 0.125 0.814 0718

Base LLM
Llama3.2-3B-Instruct 0.288 0.347 0.698 0.174 0.052 0.151
Qwen-8B 0.412 0.633 0.642 0.268 0.342 1.000
o4-mini 0.362 0.253 0.501 0.301 0.565 0.516

CAED-Agent (Ours)
Llama3.2-3B-Instruct 0.950↑ 0.773 ↑ 0.939 ↑ 0.516 ↑ 1.591↑ 0.785↑
Qwen-8B 0.853↑ 0.759 ↑ 0.897 ↑ 0.789 ↑ 1.813↑ 0.702
o4-mini 1.239 ↑ 0.679 ↑ 1.764 ↑ 0.733 ↑ 0.842 ↑ 0.536

(b) Multi-Turn CAED-Agent

Heat 1D Euler 1D NS Transient 2D

Method Base Model Rm Pm Rm Pm Rm Pm

BO (Nogueira, 2014) – 0.290 1.000 0.496 0.625 0.517 0.766

Base LLM
Llama3.2-3B-Instruct 1.060 0.837 0.328 0.531 1.232 0.448
Qwen-8B 1.613 0.756 1.511 0.421 0.662 0.861
o4-mini 1.960 0.960 1.135 0.392 0.991 0.674

OPRO (Yang et al., 2023)
Llama3.2-3B-Instruct 0.170 0.917 0.290 0.600 0.275 0.877
Qwen-8B 0.217 0.917 0.323 0.680 0.326 1.000
o4-mini 0.241 0.917 0.974 0.520 0.957 1.000

CAED-Agent (Ours)
Llama3.2-3B-Instruct 1.204 ↑ 0.946 ↑ 1.339 ↑ 0.572 1.435 0.925 ↑
Qwen-8B 1.760 0.900 ↑ 1.359 0.624 ↑ 1.535 ↑ 0.944
o4-mini 1.981 0.986 1.571 ↑ 0.443 1.538 ↑ 0.972 ↑

Table 3: Ablation results averaged over all tasks.

Single-Turn Setting Multi-Turn Setting

Setting R0 P 0 Rm Pm

CAED-Agent (Ours) 0.571 0.708 0.834 1
CAED-Agent w/ Sparse Surrogate Signal 0.42 0.5 0.635 0.875
CAED-Agent w/ Random Signal 0.142 0.583 0.426 0.583
CAED-Agent w/ In-Context Signal 0.42 0.5 0.572 0.958
CAED-Agent w/o Physics Prior 0.595 0.152 0.475 0.375
Direct Prompting 0.096 0.125 0.116 0.167
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